Select Page

China Good quality Automatic Transmission European Standard Type a B Forging Spiral Sintered Metal Straight Helical 90 Degree Differential Miter Bevel Gear top gear

Product Description

Automatic transmission European standard type A B forging spiral Sintered Metal straight helical 90 degree differential miter bevel gear 

Application of bevel gear 

Bevel gears are used to transmit power between 2 shafts that are not parallel. They are typically used in applications where the shafts are at right angles to each other, such as in differentials, winches, and drill presses.

Here are some of the most common applications of bevel gears:

  • Differentials: Bevel gears are used in differentials to transmit power from the engine to the wheels. The differential allows the wheels to rotate at different speeds, which is necessary when turning a corner.
  • Winches: Bevel gears are used in winches to transmit power from the motor to the cable. The winch is used to lift heavy objects, such as cars or boats.
  • Drill presses: Bevel gears are used in drill presses to transmit power from the motor to the chuck. The chuck is used to hold the drill bit, and the drill press is used to drill holes in materials.

Bevel gears are also used in a variety of other applications, such as:

  • Robotics: Bevel gears are used in robotics to transmit power from the motors to the joints. The joints allow the robot to move its arms and legs.
  • Machine tools: Bevel gears are used in machine tools to transmit power from the motors to the cutting tools. The cutting tools are used to shape materials, such as metal or wood.
  • Wind turbines: Bevel gears are used in wind turbines to transmit power from the blades to the generator. The generator converts the mechanical energy of the blades into electrical energy.

Bevel gears are a versatile type of gear that can be used in a wide variety of applications. They offer a number of advantages over other types of gears, including:

  • Compact size: Bevel gears are typically smaller than other types of gears, which makes them ideal for applications where space is limited.
  • High efficiency: Bevel gears are very efficient, which means that they can transmit power with minimal loss.
  • Long life: Bevel gears are very durable and can last for many years under heavy use.

Bevel gears are a good choice for applications where compact size, high efficiency, and long life are required.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

miter gear

Can miter gears be used in high-torque applications?

Miter gears can indeed be used in high-torque applications, although there are certain considerations to keep in mind. Here’s a detailed explanation:

Miter gears are capable of transmitting significant amounts of torque due to their tooth design and load distribution characteristics. The interlocking tooth design of miter gears allows for efficient torque transfer between mating gears, minimizing power loss. Additionally, the load distribution across multiple teeth helps to distribute the torque and reduce stress concentrations on individual teeth.

However, the suitability of miter gears for high-torque applications depends on several factors:

1. Tooth Design:

The tooth design of miter gears plays a crucial role in their torque-carrying capacity. Spiral bevel gears, with their curved teeth, are particularly well-suited for high-torque applications. The curved tooth profile allows for increased contact area and smoother engagement, resulting in improved torque transmission and higher load capacity compared to straight bevel gears.

2. Gear Material and Hardness:

The material and hardness of the miter gears are important considerations for high-torque applications. The gears should be made from materials with high strength and wear resistance, such as alloy steels. Proper heat treatment and surface hardening techniques can further enhance the gear’s ability to withstand high torque loads and minimize wear.

3. Lubrication and Cooling:

Effective lubrication is essential for high-torque applications to reduce friction and heat generation. Lubricants help to minimize wear and ensure smooth gear operation. In some cases, additional cooling mechanisms, such as forced-air or liquid cooling, may be required to dissipate heat generated during high-torque operation.

4. Gear Size and Diameter:

The size and diameter of the miter gears can impact their torque-carrying capacity. Larger gears generally have larger contact areas and can handle higher torques. However, it’s important to consider the available space and operating constraints when selecting the gear size.

5. Backlash Control:

Backlash, the clearance between mating teeth, can affect the smoothness and accuracy of torque transmission. In high-torque applications, maintaining proper backlash control becomes even more critical to prevent any unwanted movement or play that could impact performance and reliability.

By considering these factors, engineers can select miter gears that are suitable for high-torque applications. It’s important to consult gear manufacturers and design experts to ensure the gears are properly sized, designed, and manufactured to handle the specific torque requirements of the application.

miter gear

How do miter gears contribute to space-saving in mechanical systems?

Miter gears are known for their ability to contribute to space-saving in mechanical systems. Here’s an explanation of how they achieve this:

1. Right Angle Transmission:

Miter gears are specifically designed to transmit rotational motion at a 90-degree angle. This allows the input and output shafts to be positioned perpendicular to each other, enabling compact and space-efficient mechanical arrangements. By utilizing miter gears, complex mechanical systems can be designed with a smaller footprint.

2. Compact Gearbox Design:

Miter gears can be used in gearbox assemblies where space is a constraint. Their right angle transmission capability eliminates the need for additional components, such as bevel gearboxes or universal joints, that would otherwise be required to change the direction of the rotational motion. This compact design helps save space and simplifies the overall mechanical system.

3. Shaft Intersections and Crossings:

Miter gears allow for shaft intersections and crossings without interfering with each other. By using miter gears, designers can arrange shafts to intersect or cross paths at right angles, minimizing the space required for shaft routing. This is particularly advantageous in applications where multiple shafts need to be accommodated within a limited space envelope.

4. Versatility in Spatial Orientation:

Miter gears provide flexibility in spatial orientation, allowing for various mounting configurations. They can be used in vertical, horizontal, or angled positions, depending on the system requirements. This versatility enables designers to optimize space utilization and adapt to different mechanical layouts.

5. Integration in Compact Machinery:

Miter gears are commonly employed in compact machinery and equipment where space-saving is crucial. Examples include robotics, precision instruments, medical devices, aerospace systems, and automotive applications. By utilizing miter gears, designers can achieve compact and efficient mechanical designs without compromising performance.

6. Elimination of Space-Intensive Components:

By using miter gears, certain space-intensive components, such as drive belts, pulleys, or chain drives, can be eliminated from the system. Miter gears provide a direct and efficient power transmission mechanism, reducing the need for additional space-consuming elements, thus contributing to overall space savings.

In summary, miter gears contribute to space-saving in mechanical systems by providing right angle transmission, enabling compact gearbox designs, facilitating shaft intersections and crossings, offering versatility in spatial orientation, integrating well in compact machinery, and eliminating space-intensive components. These factors make miter gears a valuable choice for applications where optimizing space utilization is paramount.

miter gear

What are miter gears and how are they used?

Miter gears are a type of bevel gears that have equal numbers of teeth and are used to transmit motion and power between intersecting shafts. Here’s a detailed explanation:

1. Gear Design:

Miter gears have a conical shape with teeth cut at an angle of 90 degrees to the gear’s face. The teeth are cut in a straight manner, similar to spur gears, but instead of being parallel to the gear’s axis, they are cut at a right angle to transmit motion between intersecting shafts.

2. Intersecting Shafts:

Miter gears are primarily used to transmit power and motion between two shafts that intersect at a 90-degree angle. The gear’s conical shape allows the teeth to mesh correctly when the shafts are perpendicular to each other.

3. Change of Shaft Direction:

Miter gears are commonly used to change the direction of rotation between intersecting shafts. By meshing the teeth of two miter gears, the input shaft’s rotational motion can be transferred to the output shaft at a 90-degree angle, effectively changing the direction of rotation.

4. Speed Reduction or Increase:

Depending on the arrangement of the miter gears, they can be used to achieve speed reduction or speed increase. By using different numbers of teeth on the miter gears or combining them with other gears, such as spur gears, the rotational speed can be adjusted to match the desired output speed.

5. Compact Design:

Miter gears are known for their compact design, making them suitable for applications where space is limited. The intersecting shafts and the conical shape of the gears allow for efficient power transmission while occupying a small footprint.

6. Applications:

Miter gears find applications in various industries and devices, including:

  • Power transmission systems
  • Automotive differentials
  • Mechanical clocks
  • Robotics
  • Printing machinery
  • Woodworking tools
  • Camera lenses

In summary, miter gears are bevel gears with equal numbers of teeth that are used to transmit motion and power between intersecting shafts at a 90-degree angle. They are commonly employed to change the direction of rotation, achieve speed reduction or increase, and maintain a compact design in various mechanical systems.

China Good quality Automatic Transmission European Standard Type a B Forging Spiral Sintered Metal Straight Helical 90 Degree Differential Miter Bevel Gear top gearChina Good quality Automatic Transmission European Standard Type a B Forging Spiral Sintered Metal Straight Helical 90 Degree Differential Miter Bevel Gear top gear
editor by CX 2023-09-25

miter gear

As one of leading miter gear manufacturers, suppliers and exporters of mechanical products, We offer miter gear and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of miter gear

Recent Posts